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Abstract

The identification of surprising or interesting locations
in an environment is an important problem in the fields
of robotics (localisation, mapping and exploration), ar-
chitecture (wayfinding, design), navigation (landmark
identification) and computational creativity. Despite
this familiarity, existing studies are known to rely ei-
ther on human studies (in architecture and navigation)
or complex feature intensive methods (in robotics) to
evaluate surprise. In this paper, we propose a novel het-
eroassociative memory architecture that remembers in-
put patterns along with features associated with them.
The model mimics human memory by comparing and
associating new patterns with existing patterns and fea-
tures, and provides an account of surprise experienced.
The application of the proposed memory architecture is
demonstrated by identifying monotonous and surprising
locations present in a Google Sketchup model of an en-
vironment. An inter-disciplinary approach combining
the proposed memory model and isovists (from archi-
tecture) is used to perceive and remember the structure
of different locations of the model environment. The
experimental results reported describe the behaviour of
the proposed surprise identification technique, and illus-
trate the universal applicability of the method. Finally,
we also describe how the memory model can be modi-
fied to mimic forgetfulness.

Introduction
Within the context of evaluating computational creativity,
measures of accounting surprise and identifying salient pat-
terns have received great interest in the recent past. Known
by different names, the problem of accounting surprise has
been applied in various research areas. Specifically, the
problem of identifying locations that stimulate surprise has
important applications in areas such as robotics, architec-
ture, data mining and navigation. Robotics researchers,
while aiming towards robot autonomy, intend to identify lo-
cations that can potentially serve as landmarks for the local-
isation of a mobile robot (Cole and Harrison 2005; Siagian
and Itti 2009). Architects, on the other hand, intend to design
building plans that comprise sufficient salient/surprising lo-
cations in order to support way-finding by humans (Carl-
son et al. 2010). Lastly, navigation experts mine exist-
ing maps to identify regions/locations that can serve to bet-

ter communicate a route to the users (Xia et al. 2008;
Perttula, Carter, and Denoue 2009). Common to all these
applications is the underlying question, the problem of iden-
tifying patterns from raw data that appeal or stimulate hu-
man attention. While the aim of these applications is same,
the underlying measure of accounting surprise that each one
follows has been designed to suit only the respective ap-
plication. There are no domain-independent methods avail-
able that are flexible enough to be adaptable universally. Itti
(2009) and Baldi (2010) rely on Bayesian statistics, and their
method would require considerable domain-specific alter-
ation, as can be seen in (Ranganathan and Dellaert 2009;
Zhang, Tong, and Cottrell 2009). On one hand, design-
ing methods that are domain-independent having capacity of
comparing multi-dimensional data is a challenging task. On
other hand, the use of dimensionality reduction techniques
to limit or reduce dimensionality are known to cause bias.
The reduction of dimensions would depend on methods em-
ployed, and different methods may assign varying weights
to each dimension (Brown 2012). This makes surprise mea-
surement, which includes comparing multi-dimensional pat-
terns, a challenging problem.

Commonly known as outlier detection, novelty detection,
saliency detection etc., the question of detecting a “sur-
prising event” has been raised in the past (Baldi and Ittii
2010). Specifically, the methods that provide a domain-
independent approach for discovering inherent surprise in
perceived patterns aim for information maximisation. In an
information-theoretic sense, patterns that are rare are known
to contain maximum information (Zhang, Tong, and Cottrell
2009). In a more formal sense, patterns that lead to an in-
crease in entropy are deemed as unique, and are known to
cause surprise (Shannon 2001). Another argument in the
literature is about the frequency of occurrence of such pat-
terns. An event/pattern that has a lower probability of occur-
rence/appearance, is deemed rare. Therefore, various pro-
posals have been made that compare probabilities (Bartlett
1952; Weaver 1966) and identify the pattern with the low-
est probability value. These techniques were further refined
to consider the probabilities of all other patterns as well
(Weaver 1966; Good 1956; Redheffer 1951). Most recent
developments use Bayesian statistics to compare the prob-
abilities of the occurrence of patterns or features extracted
from them. Baldi and Ittii (2010) proposed to employ a dis-
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tance metric to measure the differences between prior and
posterior beliefs of a computational observer, and argued
its interpretation to be that of an account of surprise. The
authors proposed the use of Kullback-Leibler divergence
(Kullback 1997) as the distance metric, and discussed its
advantages over Shannon’s entropy (Shannon 2001). They
demonstrated the use of their proposed method by identi-
fying surprising pixels from an input image. The complex
mathematical constructs of modelling surprise that exist in
the literature are difficult to adapt, and therefore have not
found their applications across different domains.

The concept of surprise can also be understood through
its relationship to memory. Something that has not been ob-
served stimulates surprise. In this setting, if a computational
agent remembers the percepts presented to it, a measure of
surprise can be derived. Baldi and Ittii (2010) follow this
idea, but their perceptual memory is in the form of a proba-
bilistic model. The patterns that are already observed com-
pose the prior model, and the model obtained after adding
new percepts is the posterior. As noted previously, most of-
ten the patterns/features to be evaluated are available in the
form of a vector quantity (Brown 2012). Conversion of this
multi-dimensional quantity into a probabilistic model not
only requires specific expertise, but is also sensitive to the
method employed to update the model’s parameters. Even
after substantial effort in design, the memory is sensitive to
the parameters employed for the model. These shortcomings
of the state-of-the-art methods form one part of motivation
behind the current paper.

Another aspect that is ignored in most contemporary
methods is the associative nature of memory. Human mem-
ory has a natural tendency to relate/associate newly per-
ceived objects/patterns with those perceived in the past. Re-
cent research in cognitive science supports the influence per-
ceptual inference has on previous memory (Albright 2012).
A classical example is the problem of handwritten digit
recognition. Multiple handwriting patterns corresponding to
the same digit are labelled and associated via the same label.
Since the memory is always trying to associate new patterns
with previous experience, it is obvious that a strong associ-
ation will lead to lower surprise and vice versa. This prop-
erty of association, though well-recognised, has not been in-
corporated in the state-of-the-art methods of measuring sur-
prise. This forms the second motivation of the current paper.

Inspired by the discussed shortcomings of existing meth-
ods, this paper presents a computational memory framework
that can memorise multi-dimensional patterns (or features
derived from them) and account for inherent surprise after
attempting to associate and recall a new pattern with those
already stored in the memory. The uniqueness of the mem-
ory model is two-fold. Firstly, it can be employed without
converting the perceived patterns into complex probabilis-
tic models. Secondly, for the purpose of accounting sur-
prise, the memory model not only aims to match and recall
the new pattern, but also attempts to associate its charac-
teristics/features before deeming it surprising. To illustrate
these advantages and their usage, the proposed method is
employed to identify monotonous and surprising structural
features/locations present in an environment. Noted previ-

ously, this is an important problem in the field of robotics as
well as architecture, and therefore we use a Google Sketchup
(Trimble 2013) based architectural model for the demonstra-
tion. An isovist - a way of representing visible space from a
particular location (Benedikt 1979) - is used for the purpose
of perceiving a location in the form of a multi-dimensional
pattern. This paper points towards the methods of extracting
isovists from respective environments (section: Spatial Per-
ception), and provides details of the neural network based
memory architecture (section: Associative memory). Ex-
perimental results compare the degree to which identified
monotonous locations associate with each other, and illus-
trate the isovist shape of those that stimulate computational
surprise (section: Experiments & Results). Additionally, we
describe how the proposed memory model can be modified
to mimic forgetfulness, thereby forgetting patterns that have
not been seen in a given length of time. To conclude, the pa-
per provides a discussion on prospective applications of the
proposed framework, and demonstrates its universality by
evaluating its performance in a classification task, on vari-
ous pattern classification datasets (section: Conclusions &
Discussoins).

Spatial Perception
This work utilises multi-dimensional Isovist patterns to per-
ceive/represent a location. Conceptually, an isovist is a geo-
metric representation of the space visible from a point in an
environment. If a human were to stand at a point and take a
complete 360� rotation, all that was visible forms an isovist.
In practice, however, this 3D visible space is sliced horizon-
tally to obtain a vector that describes the surrounding struc-
ture from the point of observation, also known as the van-
tage point. This 2D slice is essentially a vector composed of
lengths of rays projected from the vantage point, incident on
the structure surrounding the point. Therefore, if a 1

� res-
olution was utilised, an isovist would be a 360-dimensional
vector, ~I = [r

1

, r

2

, . . . , r

360

] where r

✓

represents the length
of the ray starting from the vantage point, and incident on
the first object intersected in the direction ✓. This way, an
isovist records a profile of the surrounding structure (illus-
trated in figure 1). In an environment, multiple isovist can
be generated from different vantage points. Each isovist can
be represented as a 360-dimensional pattern describing the
structure visible from the vantage point. In this paper, an
indexed collection of isovist patterns extracted from an ex-
isting model of the environment is used.

Figure 1: A hypothetical 2D plan of an environment, show-
ing a vantage point (black dot) and the corresponding isovist
generated from the vantage point.
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Isovist Extraction
The method of extraction of isovists employed in this pa-
per is derived from our previous work (Bhatia, Chalup, and
Ostwald 2012), where we employed a Ruby script that exe-
cutes on the Google Sketchup platform and extracts 3D iso-
vists from a Google Sketchup model. This records the iso-
vists while using the “walk through” tool provided in Google
Sketchup. The “walk through” tool allows a user to walk
through a 3D model of an architectural building plan. How-
ever, in this work, we utilise modified version of the Ruby
script that extracts a 2D slice of the perceived 3D isovist.
The model of a famous architectural building, Villa Savoye,
is used to extract the isovist and identify the surprising lo-
cations present. The building is known for uniqueness of
its structure, and therefore provides good examples for the
evaluation of surprising locations.

Inputs and association patterns
An isovist records a spatial profile, and can be used to mem-
orise a location by a computational memory. This is an
advantage while trying to recognise/identify a location by
its isovist; however, becomes a drawback when the aim is
to infer surprise through association. A simple example is
the case of two rectangular rooms that are similar in shape,
but have different side lengths. While the isovists recorded
at the central point of these rooms would have a large dif-
ference, the number of straight edges, and the angles they
make, remain the same (90�). Therefore, for the purpose of
associating and finding similarities between two locations,
in this paper we employed a 3-dimensional feature vector
derived from isovist pattern. We compute (i) Area of the
isovist, (ii) Eccentricity value, and (iii) Circularity value to
form the elements of the 3-dimensional associated feature
pattern. This feature pattern is used to associate two isovist
patterns. The perceived isovist pattern, therefore, comprises
a 360-dimensional vector, and the derived associated pattern
is a 3-dimensional feature vector. The isovist of a location
and the feature vector are presented as a pair to the memory
model proposed in this paper. The memory model remem-
bers essential patterns and computes surprise after associat-
ing new patterns and comparing existing ones. Due to the
association task that the memory performs, such memories
are known as Associative Memories (Palm 2013).

Associative Memory
Associative memories are computational techniques, capa-
ble of storing a limited set of input and associated pattern
pairs (x

1

, y

1

), (x

2

, y

2

), . . . , (x

m

, y

m

). Depending on the
size of the input vector x

i

, its associated pattern y

i

, and
methods of association, various types of such memories are
proposed. Kosko (1988) was the first to introduce Bidirec-
tional Associative Memories (BAM), which provides a two
way association search mechanism termed Heteroassocia-
tion. A BAM can take either the input or associated pattern
as its input and has the capacity to recall the respective as-
sociation. Despite the utility BAM can offer, its usage has
been limited due to many existing challenges, such as lim-
ited capacity and conditions of instability. Importantly, ex-

isting variations of BAM can only memorise binary patterns.
Many other variations of BAM have been offered, however,
and the present note is provided only as a basis for the fol-
lowing discussion and is by no means an exhaustive account
of the developments on this topic. A detailed review can
instead be found in (Palm 2013). The proposed memory
model offers similar functionality without requirement for
input patterns to be binary in nature.

Overview of the architecture
The architecture of the proposed memory model consists of
two memory blocks, and can be divided into three parts. (a)
Input Memory Block (IMB): block that stores input pat-
terns, (b) Associated Memory Block (AMB): block that
stores associated feature vectors/patterns, (c) Association
Weights: a matrix that maintains a mapping between the
two memory blocks. Complete architecture of the memory
is represented in figure 2.

Figure 2: Memory Architecture: Comprise two memory
blocks and association weights, all linked through one or
more data/processing units presented in white and grey
colour respectively.

The memory blocks are the storage units responsible for
memorising input and associated patterns. This memory
model in concept works similar to traditional BAMs except
that it provides additional many-to-many mapping function-
ality on real-valued vectors. Input patterns (which in the
case of this application are isovist vectors) when presented
to the memory model are compared in two respects: (a) sim-
ilarity of shape, and (b) similarity of the features derived
from them. The detailed construction and working of each
block and the overall memory model is provided in the fol-
lowing subsections.

Memory Blocks
The smallest unit of storage in this memory model is a
Radial Basis activation unit, also known as a Radial Basis
Function (RBF). Typically, a RBF is a real valued function
with its response monotonically decreasing/increasing with
distance from a central point. The parameters that describe
a RBF include the central point c, distance metric k · k

d

and

Proceedings of the Fourth International Conference on Computational Creativity 2013 141



the shape of the radial function. A Gaussian RBF with Eu-
clidean distance metric and centre c

i

is defined in equation 1.
The parameters c

i

and radius �

i

decide the activation level
of the RBF unit. Any input x lying inside the circle cen-
tred at c

i

having a radius less than or equal to �

i

will result
in a positive activation, with the level of activation decreas-
ing monotonically as the distance between the input and the
centre increases.

�

i

(x) = exp

✓
� (x� c

i

)

2

�

2

i

◆
(1)

The realisation of a memory element in our approach is
done by saving the input as the centre c

i

, and adjusting the
value of the radius �

i

to incorporate values that lie close to
each other. Mathematically, this memory element will have
�

i

(x) > 0 activation for all values of x that fall in a �

i

neighbourhood of the point c
i

defined in equation 2. Fur-
ther, lim

x!c

i

�

i

(x) = 1. This condition ensures that the
activation unit with the centre c

i

closest to the current input
x activates the most.

B(c

i

;�

i

) = {x 2 X | d(x, c
i

) < �

i

} (2)

In a collection of multiple RBF units, with each having a
different centre c

i

and radius �
i

, multiple values can be re-
membered. If an input x is presented to this collection, the
unit with highest activation will be the one that has the best
matching centre c

i

. Or in other words, for the presented in-
put value, the memory block can be said to recall the nearest
possible value c

i

. For one input pattern, there will be one
corresponding recall value. This setting of multiple RBF
units can thus work as a memory unit. The Memory Blocks
described previously comprise multiple RBF units. As an
example, a memory block comprising n RBF units can be
represented with figure 3.

Figure 3: RBF Memory Block: Each RBF unit stores one
data value in the form of centre c

i

; the range of values for
which the unit has positive activation are defined by the val-
ues of �

i

according to equation 2. c

max

is the value that
the memory recalls as the best match to the input, and �

max

represents the confidence in the match.

So far we have described the use of the RBF unit as a
memory block having a scalar valued centre c

i

. In order to
memorise a multi-dimensional pattern (in this application an

isovist pattern, comprising 360 ray-lenghts), we modify the
traditional RBFs to handle a multi-dimensional input isovist
vector ~x by replacing its scalar valued centre with a 360-
dimensional vector ~c

i

. While Euclidean distance and dot
product of two multi-dimensional vectors are also scalar and
do not disrupt the working of standard RBFs, their capacity
to capture the difference in shape between two isovist pat-
terns is minimal. Therefore, in order to account for differ-
ence in shape, we replace the Euclidean distance metric by
Procrustes Distance (Kendall 1989). The procrustes distance
is a statistical measure of shape similarity that accounts for
dissimilarity between two shapes while ignoring factors of
scaling and transformation. For two isovist vectors ~x

m

and
~x

n

, the procrustes distance h~x
m

, ~x

n

i
p

first identifies the op-
timum translation, rotation, reflection and scaling required
to align the two shapes, and finally provides a minimised
scaled value of the dissimilarity between them. An example
of two similar and non-similar isovists with their procrustes-
aligned isovists is shown in figure 4. Utilising procrustes
distance with the multidimensional centre ~c

i

, we term this
Multidimensional Procrustes RBF, which is defined as:

�

i

(~x) = exp

 
�
h~x, ~c

i

i2
p

�

2

i

!
(3)

Procrustes distance provides a dissimilarity measure ranging
between 0 and 1. A zero procrustes distance therefore leads
to maximum activation and vice versa. A multidimensional
procrustes RBF has the capacity to store a multi-dimensional
vector in the form of its centre. It is important to note that
for the application described in this paper, the difference be-
tween two multi-dimensional vectors, viz. the isovists, was
recorded using procrustes distance. However, in general the
memory model can be adapted for any suitable distance met-
ric, or used with the simple Euclidean distance. The use of
procrustes distance as a distance metric was adapted specif-
ically for the purpose of the application of identifying sur-
prising locations in an environment.

Figure 4: Two isovist pairs (illustrated in red and blue) and
corresponding aligned isovists (black dashed), one with a
high procrustes distance (left) and other with a low pro-
crustes distance (right).

IMB and AMB IMB and AMB are in principle collec-
tions of one or more multidimensional-procrustes RBF and
multidimensional RBF units respectively, grouped together
as a block (such as the one represented in figure 3). Each
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block is initialised with a single unit that stores the first in-
put vector (for IMB) and derived features (for AMB). The
feature vector employed to associate two input patterns (in
this application isovists) comprise (i) area, (ii) circularity,
(iii) eccentricity, together making up a 3-dimensional vec-
tor. Initially, each block is created with a single memory
unit having a default radius 0.1. Thereafter, the memory
block adapts one of the two behaviours. For new patterns
that lie far from the centre, the memory block grows by in-
corporating a new RBF unit having its centre same as the
presented pattern. On the other hand, for patterns that lie
close to existing patterns, the radii of the RBF units are ad-
justed in order to obtain positive activation. Adjustment of
the radii is analogous to adjustments of weights performed
during the training of a Neural Network. The procedure fol-
lowed to expand or adjust the radii can be understood by
following algorithms 1 & 2. Consider a memory block com-
prising k neural units, with their centres ~c

1

, ~c

2

, . . . , ~c

k

and
radii �

1

,�

2

, . . . ,�

k

and the distance metric h·i
d

. Let the
model be presented with a new input vector ~x. The algo-
rithm 1 first computes h·i

d

distance (procrustes distance in
the case of an isovist block) between each central vector and
the presented pattern, and compares the distance with pre-
specified best and average match threshold values ⇥

best

and
⇥

average

. If the distance value is found as d  ⇥

best

, the
corresponding central vector is returned - as this signifies
that a similar pattern already exists in memory. However, in
the case where ⇥

avg

 d < ⇥

best

, the radius of the corre-
sponding best match unit is updated. This updating ensures
that the memory responds with a positive activation when
next presented with a similar pattern.

Algorithm 1 Memory Block Updation
Require: ~x, [c

1

, c

2

, . . . , c

k

], ⇥
best

, ⇥
avg

, ⌃
1: for all center vectors c

i

do
2: d

i

(~x) ( h~x, ~c
i

i
d

3: end for
4: bestScore ( min

i

(d

i

)

5: bestIndex ( argmin (d

i

)

6: blockUpdated ( false
7: if (⇥

best

 bestScore) then
8: ~r ( ~c

bestIndex

9: blockUpdated ( true
10: else if (⇥

avg

 bestScore < ⇥

best

) then
11: if (�

bestIndex

< ⌃) then
12: [~c

bestIndex

,�

bestIndex

] ( computeCenter()
13: blockUpdated ( true
14: end if
15: end if
16: if (blockUpdated == false) then
17: add new neural unit center with
18: ~c

k+1

= ~x

19: �

k+1

= 0.1

20: end if

The network expands on the presentation of patterns that
cannot be incorporated by adjusting the weights/radii of the
RBF units. This feature provides three advantages over the

Algorithm 2 Center vector and radius calculation
Require: ~c

bestIndex

,⇥

best

, ~x

~c

old

( ~c

bestIndex

~c

bestIndex

( (~c

bestIndex

+ ~x) /2

d

new

( (

h~x, ~c

bestIndex

i
d

)

2

�2·log(⇥
best

)

d

old

( (

h~c
old

, ~c

bestIndex

i
d

)

2

�2·log(⇥
best

)

�

bestIndex

( max (d

new

, d

old

)

traditional BAMs. The first is that there is no a-priori train-
ing required by the memory block. The memory is up-
dated as new patterns are presented, and the training is on-
line. Secondly, adjustment of weights ensures that similar
patterns are remembered through a common central vector,
thereby reducing the number of neural units required to re-
member multiple patterns. Despite the averaging process, a
high level of recall accuracy is guaranteed by maintaining all
radii �

i

 ⌃. The values of ⇥
best

, ⇥
avg

and ⌃ are applica-
tion specific parameters that require adjustment. However,
for the purpose of associating and remembering isovists, in
our application we determined these using equations 4, 5, 6.
Here, D

ij

is a n⇥n matrix containing h·i
p

distances between
all central vectors; std(D

ij

) stands for standard deviation.

D

ij

= h~c
i

, ~c

j

i
p

S

d

=

nX

i 6=j

D

ij

⇥

best

=

percentile(S

d

, 95)

S

d

(4)

⇥

avg

=

percentile(S

d

, 50)

S

d

(5)

⌃ =

min(std(D

ij

))

max(std(D

ij

))

(6)

Association Weights Association weights act as a sepa-
rate layer of the network architecture, and play the role of
mapping the input patterns with their associated features.
For a case of m isovist patterns and n associated feature
vectors stored in IMB and AMB respectively, the associa-
tion weights would comprise a (m⇥ (n+ 1)) matrix. The
first column of the matrix contains the indices of each cen-
tral vector ~c

i

and the remaining columns contain mapping
weights. On initialisation, the mapping weights are set to
zero. Once each memory block is updated, the correspond-
ing best match index obtained as an output of the memory
block is used to configure the values of the matrix. Let q
be the index returned from IMB, and r be the index ob-
tained from AMB. The weight updation simply increments
the value at the q

th row and r + 1

th column of the weight
matrix. If such a row or column does not exist (signifying
a new addition to the memory block), a new row/column is
added. During the use of the memory model to recall the
associated vector from the presented input vector, assuming
an index p was returned, the p

th row is selected, and the in-
dex of the column containing the highest score is obtained.
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Let this index be k. If the highest score in k

th column this
implies that for AMB, the centre of the kth activation unit is
most strongly associated with the current input. This kind
of mapping look-up can be performed vice versa as well
and provides an efficient bi-directional many-to-many map-
ping functionality, which is hard to implement in traditional
memory models.

Surprise Calculation The Kullback-Leibler (KL) diver-
gence (Kullback 1997) is a measure of difference between
two probabilistic models of current observations. To es-
timate KL divergence, an application specific probabilistic
model of the current data is required, and in most cases the
design of such a model requires specific expertise. In our ap-
proach, each memory model computes the surprise without
having the need to train/estimate or design any probabilistic
model. This is achieved by using activation scores that each
memory unit outputs on presentation of a pattern. These
scores are obtained through RBF activation units. Each
score in principle is therefore a probabilistic estimate of the
similarity between the input vector and the centre of the cor-
responding memory unit. Exploiting this property, we mea-
sure the KL divergence on activation scores. On presentation
of a new input vector ~x to a memory block, the activation
scores are first computed. Since these scores are calculated
before the block updates (using algorithm 1 & 2), they are
termed a-priors, A = [a

1

, a

2

, . . . , a

n

]. Post the execution
of algorithm 1, the memory block would either remain the
same (in the case of best match), or change one of its radius
values (for average match), or lastly may have an additional
neural unit (no match). Accordingly, the activation scores
obtained after the updating might be different from the a-
priors. Scores obtained after the updating of memory are
termed posteriors, P = [p

1

, p

2

, . . . , p

m

]. If n < m, the a-
priors are extrapolated with the mean value of A to ensure
m = n, and finally the KL-divergence or the surprise en-
countered is computed as:

S =

mX

i=1

ln

✓
p

i

a

i

◆
· p

i

(7)

Here a

i

and p

i

are a-prior and posterior activation scores
respectively. IMB and AMB each provides an estimate of
the surprise encountered by each block. Surprise value from
IMB indicates the surprise in terms of shape of the isovist
(in the current application), and one from AMB indicate the
surprise encountered in terms of associated features. Overall
surprise is an average of the two surprise values. Illustration
of the surprise values returned from AMB along with the
values in the input vector are presented in figure 5a. Calcu-
lation of surprise in the memory model has two advantages,
one that the user does not need to meticulously design of
a probabilistic model and second that the surprise calcula-
tion is independent of the number of dimensions of the input
vector.

Forgetfulness in memory
In order to imitate human memory more closely, one addi-
tional functionality that can be added in the presented mem-
ory model is the property of forgetting. The principal of

“out of sight is out of mind” can be implemented in the pre-
sented memory model by the use of a bias value for each
memory unit. Diverting from the traditional use of bias val-
ues, in our approach a bias value is used to adjust the acti-
vation score in such a way that the most recently perceived
or activated memory unit attains a tendency to have higher
activation score, and vice versa. This is achieved by decre-
menting the bias values of the units that were not recalled. In
this way, if a pattern is presented once to the memory and is
never recalled, that pattern will have the lowest bias. The ef-
fect of low bias will be low levels of activation, and therefore
a low recall rate. This feature is an important consideration
when evaluating “what causes surprise” and is therefore pro-
grammed as an optional configuration that can be used in the
current memory model. However, for the current evaluation
of surprising locations, it is assumed that the perceiver will
not forget any location that was presented earlier.

Experiments & Results
Deciphering surprising structures
The isovist patterns extracted from the Google Sketchup
models along with the feature vector (described earlier) were
presented one at a time to the memory model. For the
present application, the values of ⇥

best

and ⇥

avg

were ap-
propriately selected to ensure that the change in size of the
location, viz. the value of area, does not contribute to the
value of AMB surprise. This was deliberately designed to
serve the purpose of the present application, viz. decipher-
ing surprising locations. The aim in our application was to
consider a location surprising largely based on the surprise
caused by its shape (isovist) and, to a limited extent, by the
associated features. Hence only regions that differ in shape
as well as in the values of derived features tend to be most
surprising. The plot in figure 5(a) illustrates the values of
surprise (ordinate) obtained from IMB and AMB for each
isovist index (abscissa). As evident, the values of IMB sur-
prise are initially very high, since the memory model has
not been exposed to any isovist patterns. As the memory
is presented with more isovist patterns (represented by in-
creasing index of isovists), the surprise initially fluctuates,
and then gradually decreases. On the other hand, AMB
surprise always retains low values due to the low value of
match thresholds ⇥

best

and ⇥

avg

chosen for AMB. How-
ever, despite low match thresholds, the AMB surprise was
highest at two locations where the associated feature values
peaked (illustrated in figure 5(b)). Again, this sudden drift
was surprising and was very well captured by the computed
surprise shown in the same plot. The view of the location
corresponding to locations with highest and lowest surprise
values are presented in figure 5(c). The views are recorded
from the Google Sketchup model.

Forgfullness demonstration
The behaviour of IMB and AMB surprise - while having the
forgetting behaviour enabled - can be very well verified from
figure 6(a) and (b). Figure 6(a) presented the IMB and AMB
surprise values obtained with the same experiment compris-
ing 300 isovists. Unlike figure 5(a), this time the gradual de-
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Figure 5: The figure illustrates the results of surprise evalua-
tion of IMB and AMB, without forgetfulness behaviour. 5(a)
presents scaled values of IMB and AMB surprise, and 5(b)
presents scaled values of associated features. 5(c) illustrates
the view from identified high surprise (top row), and low sur-
prise (bottom row) locations. It was discovered that surprise
values were high at transitions between two locations, and
low surprise was identified at locations with monotonous
passages and rooms.

crease in the values of IMB surprise is not noticed. Regular
peaks demonstrate that despite prior exposure to similar iso-
vists or features, both IMB and AMB evaluate high surprise.
This is because each memory block is implementing the for-
getting behaviour (described earlier). As a result, they forget

what was previously remembered, and hence cause higher
values of surprise. The general trend in the difference of sur-
prise values with forgetting and without forgetting behaviour
is illustrated in figure 6(b). The white region between the
two curves is the difference between overall surprise values.
Remembering all patterns without forgetting causes the sur-
prise values to gradually reduce. In comparison to the val-
ues of surprise with forgetting behaviour, these cause fewer
peaks. Additionally, the thick red and green curves present
smoothened values of overall surprise with forgetting and
without forgetting behaviour respectively. These again pro-
vide the reader with the general trend each one follows.
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Figure 6: Comparison of the results of surprise evaluation
with forgetfulness either enabled or disabled. 6(a) presents
individual IMB and AMB surprise values, and 6(b) presents
the difference between overall surprise experienced in the
two cases. This is shown by the two shaded regions. Ad-
ditionally, 6(b) also represents smoothened values of over-
all surprise in case of forgetting enabled (WF) and disabled
(W/o F). Surprise values of IMB and AMB were found to at-
tain more frequent peaks in the memory with forgetfulness,
as it tends to “forget” previously presented patterns.

Conclusions & Discussion
In this paper, we presented a computational model of as-
sociative memory that is capable of remembering multi-
dimensional real-valued patterns, performing bi-directional
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association, and importantly, mimicking human memory by
providing an account of surprise stimulated. The memory
model is constructed using collections of multi-dimensional
RBF units with procrustes distance as the metric for com-
parison between input and centre. The unique feature of the
presented memory model is that it masks the complex re-
quirement of probabilistic modelling required otherwise in
the current literature for computing surprise. Additionally,
the presented memory model, while providing similar func-
tionality to BAM has capacity to remember real-valued pat-
terns without issues concerning stability. Furthermore, simi-
lar to the working of human memory, the presented memory
model can be configured to forget patterns that are not re-
called over long periods of time, thereby implementing the
rule, “out of sight is out of mind”.

The use of the memory model is demonstrated by iden-
tifying locations within an architectural building model that
has variations in structure, which stimulates surprise. An
isovist - a way of representing the structural features of a
location - is used to represent the shape of a surrounding
environment. Experimental results reveal and confirm the
expected behaviour of surprise computation in two ways.
First, from the application point of view, the identified high
surprise locations were found to exist near transitions be-
tween two smaller parts of the “Villa-Savoye” house. This
would be expected when the shape of the region where a
person/agent enters changes its shape drastically. Second,
the expected difference between the surprise values obtained
from two experiments with forgetfulness behaviour enabled
and disabled was verified (figure 6(b)). While the values
of overall surprise continued to spike in the memory with
forgetfulness, a gradual decrease was observed in the mem-
ory without forgetfulness. These two results verify the be-
haviour of surprise computation and the forgetfulness be-
haviour of the proposed memory model, and the technique
employed for surprise computation.
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